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The Limitations of Random Assignment: A Computational Simulation 

 
 

Abstract 

In social research, estimates of the effect of one variable on another can be distorted by 

individual variation associated with the dependent variable. In experimental designs, random 

assignment of subjects to conditions helps address this challenge. However, random assignment 

does not always produce equivalent groups, and when distributions of an extraneous variable 

differ across conditions the apparent effect of a treatment may differ substantially from the true 

effect. On this basis, a simulation was conducted to examine (a) the extent that random 

assignment of subjects to conditions affects the distribution of pretest scores in a posttest-only, 

control group experiment, and (b) the extent to which these various distributions of pretest scores 

influence the observed effect of the experimental treatment on the dependent variable. Results 

indicate that random assignment often fails to create equivalent groups, and that these failures 

lead to substantial discrepancies between observed and actual effects of a treatment. 
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In their seminal monograph on experimental design Campbell and Stanley (1963) 

emphasized that the equivalence of subjects assigned to the various experimental and control 

groups that comprise an experiment poses a challenge to the validity of experiments. They 

termed this potential source of invalidity the selection bias. Subsequently, methods texts have 

reinforced this point (Singleton & Straits, 2010, pp. 233-234).  Campbell and Stanley (1963) 

argue that subject differences in demographic characteristics, personality traits, and other 

dimensions of individual variation associated with the dependent variable can result in 

unwarranted conclusions being drawn to the extent that their distributions differ across 

conditions of the experiment. The random assignment of subjects to the various conditions of an 

experiment provides a means of addressing this challenge.1  

Investigators have asserted that random assignment assures the comparability or near 

comparability of subjects in the various conditions of the experiment. Examination of canonical 

texts produces examples that reinforce this point of view. For example, Campbell and Stanley 

(1963) write: “Perhaps Fisher¶s most fundamental contribution has been the concept of achieving 

pre-experimental equation of groups through randomization” (p. 2). And, Fisher (1947) writes 

that randomization, “. . . relieves the experimenter from the anxiety of considering and 

estimating the magnitude of the innumerable causes by which the data may be disturbed” (p. 43). 

Unsurprisingly, some methods textbook authors have adopted the same point of view. Singleton 

and Straits provide an example when they write: 

Random assignment means that the procedure by which subjects are assigned (in this 

case, tossing a coin) ensures that each subject has an equal chance of being in either 

group. By virtue of random assignment, individual characteristics or experiences that 

might confound the results will be about evenly distributed between the two groups. 
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Thus, the number of students who are bright or dull, motivated or unmotivated, fully 

nourished or hungry, in love or not in love, and so forth, should be about the same in each 

group” (p. 197).  

A strong sense of “comparability” as used in the preceding paragraph requires equal 

means and standard deviations on the extraneous variable(s) in each condition of the experiment. 

A weakened version requires equal means only. Notice that equal means on an extraneous 

variable both in a control group and in an experimental group implies that the correlation 

between the induced variable and the extraneous variable equals zero. To the extent that 

randomization fails to yield this outcome, mean scores on the extraneous variable differ in the 

two conditions. And, when mean scores on the extraneous variable differ in the two conditions, 

the correlation between the experimentally induced variable and the extraneous variable departs 

from zero. For example, consider a one-factor, independent groups experiment in which the 

experimentally induced variable consists of an experimental condition and a control condition. 

Suppose that the mean score on an extraneous variable is 8.5 in the experimental condition, 6.5 

in the control condition, the variance in both conditions equals 5, and that 20 Ss participate in 

each condition. In this case t (38) ≈ 2.83, and transforming t to r yields, r ≈ .42. Notice that 

reversing the order of the means, i.e., 6.5 in the experimental condition and 8.5 in the control 

condition, results in r ≈ -.42. Thus, “near comparability” refers to this correlation closely 

approximating zero. 

Despite the assertions of Fisher, Campbell and Stanley, and others, some scholars 

question this assertion (Krause & Howard, 2003; Sidani, 2006). One reason for suspicion stems 

from considering the mathematical constraints on the possible values that correlations among 

three variables may assume. Consider, for example, a case in which an experimentally induced 
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variable, X, correlates .3 with a dependent measure, Z. Denote a relevant extraneous variable, Y, 

and suppose that Y correlates .7 with the dependent measure, Z. It follows that the XY 

correlation can range from -.47 to .99 (Glass & Collins, 1970; Stanley & Wang, 1969). Consider 

three scenarios. In the first randomization works perfectly so that rXY = 0, in the second rXY = -.3 

and in the third rXY = .3. In the first case, performing the multiple regression analysis, or its 

equivalent the analysis of covariance, to examine the effect of X on Z controlling for the 

extraneous variable Y shows that, ȕX = rXY = .30. In the second case ȕX = .56. And, in the third 

case, ȕX = .10. When random assignment works perfectly, the XZ correlation estimates well the 

impact of X on Z. But, when rXY < 0, the XZ correlation, or the t-test of the difference in the Z 

means in the control and experimental conditions, provides a substantial underestimate of the 

causal impact of X on Z. In this case Y suppresses the XZ correlation because random 

assignment placed people with lower mean scores on the extraneous variable in the experimental 

condition. And, when rXY > 0, the XZ correlation, or the t-test of the difference in the Z means in 

the control and experimental conditions, overestimated the causal impact of X on Z because 

random assignment placed people with higher mean scores on the extraneous variable in the 

experimental group. The substantial differences among these coefficients, and the likely 

differences in the conclusions that investigators would draw from them, hint at the possibility 

that random assignment may depart from the ideal suggested by Fisher and Campbell and 

Stanley. 

 Nevertheless, although it is possible that rXY ranges from -.47 to .99, each of the values in 

this range do not have equal probability. With even modest numbers of subjects assigned to 

conditions, enumerating all possible combinations of the distribution of the extraneous variable 
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across even two conditions raises a formidable challenge. Simulations, however, can provide an 

excellent approximation.  

The Posttest-Only, Control Group Design 

The posttest-only, control group design provides an important venue in which to test the 

effectiveness of random assignment. For example, with a dependent measure such as attitude 

change investigators may rely on random assignment to equate subjects on the focal pretreatment 

attitude so that analyzing the impact of an induction on the posttreatment attitude measure 

approximates closely a measure of attitude change, the variable of theoretical interest (e.g., Yan, 

Dillard, & Shen, 2012). The belief that random assignment of subjects to conditions assures that 

subjects in the two conditions have equal, or near equal, pretreatment scores on the dependent 

measure forms a pivotal premise in the argument for the conclusion that the post-treatment 

attitude measure provides a reasonable proxy for a measure of attitude change.2 And, Campbell 

and Stanley, for instance, endorsed this point of view when in their discussion of the posttest-

only, control group design they wrote, “Nonetheless, the most adequate all-purpose assurance of 

lack of individual biases between groups is randomization. Within the limits of confidence stated 

by the tests of significance, randomization can suffice without the pretest (p.25). 

Conceiving of the pretest in a pretest-posttest, control group design as a type of 

extraneous variable, the reasons provided previously for questioning the effectiveness of random 

assignment apply. To examine this matter, a simulation was conducted to examine (a) the extent 

that random assignment of subjects to conditions affects the distribution of pretest scores in a 

posttest-only, control group experiment, and (b) the extent to which these various distributions of 

pretest scores influence the observed effect of the experimental induction on the dependent 

variable. The following section describes the details of that simulation.   
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Method 

The simulation consisted of four stages. First, a model generated the posttest scores. 

Second, from a defined population of subjects mathematical manipulations constrained the 

pivotal population parameters, setting the effect size for the treatment. Third, computer 

simulations drew random samples of varying sizes from this population. Last, analyses examined 

the obtained results. Discuss of each of these four steps follows. 

Modeling the Posttest-Only, Control Group Design 

In a posttest-only, control group experiment a distribution of pretest scores (Y) exists, but 

is unobserved. In the simulation this distribution was modeled by drawing N observations from a 

normally distributed population. Thus, each observation, i, has a pretest score, yi. 

Pretest scores were then assigned randomly to one the two values of the experimentally 

induced variable (X), i.e., either to the control group or to the experimental group. This random 

assignment was conducted under the constraint of equal numbers of observations in the two 

conditions.  

In the experimental group, but not in the control group, the treatment was presumed to 

have some positive and homogeneous effect, denoted by a, on the posttest score (Z). Moreover, 

it was presumed that numerous uncontrolled forces would exert an impact, both on the posttest 

score in the control group and on the posttest score in the experimental group. These sum of 

these forces contribute to the residual (R), its effect characterized by a change of r points from 

the pretest to the posttest. In the simulation the distribution of R, in both the control group and 

the experimental group, was normal with a mean of zero and a standard deviation VR. 

Furthermore, R was constructed so that in the population it was uncorrelated with Y. 



RANDOM ASSIGNMENT 7 

Consequently, the post-test scores in the experiment group (X=1) resulted from the 

following expression,  

z = y + a + r = y + aX + r, (X = 1, r ~ N(0, VR
2))   (1) 

and the post-test scores in the control group (X=0) were calculated as, 

z = y + r = y + aX + r, (X = 0, r ~ N(0, VR
2))    (2) 

Alternatively, generalizing (1) and (2) yields,  

Z = y + aX + r, (X = 0,1; r ~ N(0, VR
2)).    (3) 

Constraining Population Parameters and Effect Sizes 

The correlation between X and Z in the population (UXZ) is a constant so that any 

variance in sample XZ correlations results from the post-test only design with random 

assignment. Pivotal population parameters were set as follows. 

var(Y) = 1 

var(X) = 0.25 (by definition of equal cell size) 

a = √0.72 

var(R) = 0.82 

Mean population correlations between variables in the model were set as follows (see Appendix 

B for elaboration). 

UXZ = .30 

UYZ = √0.5 

UXY = UXR = UYR = 0 

Computer Simulations 

   Ten thousand simulations, each representing a distinct sample randomly drawn from the 

population, were conducted for five sample sizes (N = 20, 40, 60, 80, and 100). For each 
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iteration, N pre-test scores (y) were randomly drawn from a standard normal distribution, and N 

residual scores (r) were randomly drawn from a normal distribution with mean zero and 

variance.82. Subsequently, each of a randomly selected N/2 experimental group posttest 

observations were calculated from equation 1 (z = y + √0.72 + r), and the remaining N/2 control 

group posttest observations were calculated from equation 2 (z = y + r). All simulations were 

conducted using STATA. See Appendix C an example of the STATA code. 

Sample Statistics Calculation 

   The sample correlations between the experimentally induced variable, X, and the pretest 

score, Y (rxy), the correlation between X and posttest score, Z (rxz), the standardized regression 

coefficient estimating the impact of X on Z controlling for Y (Ex) were calculated for each 

iteration. Null hypothesis statistical significance tests (NHSST) were also conducted both for rxz 

and Ex in each study.  

RESULTS 

 Appendix A presents all tables. Table 1 shows the distributional properties of the 

obtained correlations between the experimentally induced variable, X, and the pretest, Y, for 

each of the five sample sizes. If randomization worked perfectly, then mean pretest scores in the 

control group would equal those in the experimental group with the result that the rxy correlation 

would equal zero. It rarely does, however. Rounding to two decimal places, at N = 20 only 

1.71% of the iterations produced an rXZ which equaled 0.00 when rounded to two decimals. The 

comparable figures for the other sample sizes included: 2.64% (N = 40), 3.06% (N = 60), 3.70% 

(N = 80), and 4.34% (N = 100). 

As the data in Table 1 indicate random assignment produces an rXZ of zero to two 

decimal points, on average, for each sample size. As expected from the standard error of the 
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correlation coefficient, the standard deviation of these distributions decrease with sample size, 

although for each N the standard deviation exceeds slightly the standard error, a result that may 

be attributable to random assignment. Moreover, given that a value of three (3) indicates a 

perfectly mesokurtic distribution, these distributions differ only trivially from normality. 

 The striking feature of these data, however, is the range in the obtained values. For N = 

20 (10 observations per condition) the range is 1.442 on a scale with a possible range of 2.0. 

And, although that figure decreases with sample size, it remains an ample 0.762 when N = 100. 

In conjunction with the size of the standard deviations this outcome indicates that random 

assignment can produce numerous and substantial differences in pretest scores between the 

control group and the experimental group. In this simulation these differences can, and do, have 

important implications for the observed effect of the induced variable, X, on posttest scores, Z. 

 Table 1 also contains the distributional properties of the correlation between the 

experimentally induced variable, X, and the posttest measure, Z. Notably, it is this mean 

difference, and the accompanying effect size measure (r in this case), that investigators would 

observe in a posttest-only, control group design, and that they would employ to draw conclusions 

as to the effectiveness of the treatment. The mean correlation hovers closely around a value of 

0.31, slightly exceeding its population value of 0.30, for each value of N. As expected, the 

standard deviation decreases with sample size. The distribution of these values is skewed 

negatively, perhaps reflecting the bias in the Pearson Product Moment Correlation Coefficient 

when it is positive, with skewness decreasing with increasing N. Kurtosis is minimal. 

 Once again, the range is the striking feature of these data. When N = 20, the range is 

1.454, with the largest obtained coefficient being 0.864 and the smallest values being -0.589. 

And, when N = 100, the range remains an ample .671 with a maximum value of approximately 
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0.60 and a minimum value less than zero. In conjunction with the size of the standard deviations 

this outcome shows that in posttest-only, control group designs with random assignment 

substantially different estimates of the impact of an experimental induction can result. And, as 

will be demonstrated subsequently, these differences may have important effects on the 

substantive conclusion drawn from experiments. 

 Finally, Table 1 includes the distribution of the estimate of the impact of the 

experimentally induced variable (X) on the posttest measure (Z) controlling for any differences 

in the pretest variable (Y) between experimental groups (i.e., that would result in rXY ≠ 0). This 

statistic is denoted as ȕX and refers to the standardized regression coefficient. The mean values of 

ȕX exceed, but only slightly, the mean values of rXY with the mean values of ȕX falling into the 

0.31 – 0.32 range. Standard deviations decrease with sample size, and notably are smaller than 

those associated with rXZ at each value of N. The distribution of the ȕX coefficients approximates 

closely the normal distribution with skewness and kurtosis being minimal. 

 Although the range of the ȕX coefficients remains ample, it is less than the range of rXZ 

for each value of N. Moreover, as N increases from 20 to 80 the difference between the ranges of 

ȕX and rXZ increases. At N = 100 this difference decreases, but remains substantial. 

 Table 2 expands on the observed differences in rXZ and ȕX. The first column presents the 

absolute value of the difference in these coefficients, and the remaining columns display the 

percentage of the iterations in which rXZ and ȕX differed by that amount or more for each value 

of N. So, for example, when N = 20, in 75.89% of the iterations the difference between these 

coefficients differed by more than .05 with either rXZ exceeding ȕX or the reverse. 

 Table 2 demonstrates that for any sample size, the percentage of iterations meeting or 

exceeding a given discrepancy decreases as the magnitude of the discrepancy increases. Thus, 
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small discrepancies between the two coefficients are more frequent than are large discrepancies. 

This table also demonstrates that as N increases rXZ and ȕX differ for fewer cases at any given 

discrepancy. Hence, however the difference is defined, larger samples produce fewer differences 

than do smaller samples.  

 It is important to note that even small discrepancies can result in substantially different 

substantive conclusions being drawn in individual experiments. Nevertheless, some of the values 

in Table 2 suggest that across a body of research the appearance of important substantive 

differences might emerge from being able to correct for or not correct for differences in pretest 

scores for those assigned randomly to the control group and to the experimental group. For 

example, at N = 60 ȕX and rXY differ by .10 or more in almost 30% of the iterations. Also, at N = 

60 more than 11% of the iterations produced differences of .15 or more. 

 Table 3 examines the extent to which these two estimates of the impact of X on Z, rXZ 

and ȕX, differ from the estimated population parameter of .31. It is this value, both of rXZ and ȕX, 

that is obtained when randomization works perfectly, i.e., when rXY = 0. From Table 3 it can be 

observed that for both coefficients the percentage of iterations that deviate from .30 for any N 

decrease as the discrepancy increases. It can also be observed that for any fixed level of 

discrepancy the percentage of coefficients deviating from .31 decrease as N increases. 

 The striking feature of these data, however, is that the percentage of cases that deviate for 

any given N and any given discrepancy are lower, often substantially so, for ȕX than for rXZ. So, 

for example, when N = 60, 19.95% of the XZ correlations differ from the population value by 

.15 or more, the corresponding percentage being 5.29% for ȕX. Therefore, for this N and at this 

level of difference the latter is closer to the population value by a factor of 3.77. Or, when N = 

100, these values are 2.25% and 0.10% respectively, so that they differ by a factor of 22.5. Thus, 
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Table 3 indicates that controlling for the pretest when assessing the impact of X on Z, as opposed 

to failing to doing so (as would necessarily be the case in the posttest-only, control group 

design), produces estimates nearer those of the population values, i.e., the estimate of the XZ 

effect when the control group and experimental group have equal pretest means on the dependent 

variable.  

 Finally, Table 4 presents the implications of non-equivalent experimental groups in terms 

of the null hypothesis statistical significance test (NHSST). The first two sections of the table 

show the percentage of the samples for which statistically significant effects were obtained, first 

for the XZ correlation and second for ȕX. Because the simulation was created so that the impact 

of X on Z was non-zero, the fact that none of the entries in these sections of the table reaches 

100% is a comment on the lack of statistical power when effects of this size are estimated from 

samples of these sizes. And, consistent with what is known of statistical power (e.g., Cohen, 

1988), the entries in these sections of the table approach 100% as N increases. The most striking 

feature of these sections of the table, however, is that when p ≤ .05, ȕX is more likely to produce 

a statistically significant outcome than is rXZ. For example, statistically significant results are 

produced for approximately the same percentage of ȕX when N = 20 as for rXZ when N is twice 

as large. And, only a slightly smaller percentage of ȕX are statistically significant when N = 40 as 

for rXZ when N = 100. Hence, these results indicate that ȕX is a more powerful estimator of the 

XZ effect than is rXZ. 

 The last two sections of Table 4 present the percentage of cases for which rXZ is 

statistically significant (rXZ only) and ȕX is not, and the percentage of cases for which ȕX is 

statistically significant (ȕX only) and rXZ is not. Consistent with what is known about statistical 

power, these figures decrease as N increases. More striking, however, is that it is rarely the case 
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that rXZ is statistically significant when ȕX is not; whereas, it is more substantially more common 

for ȕX to be statistically significant when rXZ is not. 

DISCUSSION 

Summary 

 These results lead to at least five important conclusions. First, at least with N ≤ 100, in a 

posttest-only, control group design random assignment of subjects to conditions is unlikely to 

produce two groups of equivalent subjects, defined as having equal means on the pretest (had 

one been administered). But, second, random assignment improves as sample sizes increase. 

Although even when N = 100 a small percentage of cases manifest equivalence, as defined by 

rXY equaling zero to two decimals, the decreasing standard deviation in the rXY distribution that 

accompanies increasing N indicates that as N increases the rXY correlation is likely to be 

substantially closer to zero. Notably, this point was familiar to Campbell and Stanley when they 

wrote, “Thus, the assurance of equality is greater for large number of random assignments than 

small” (Campbell & Stanley, 1963, p. 15). 

Third, the effectiveness of random assignment in producing equivalent groups has an 

impact on the substantive conclusions that would be drawn from standard analyses of the data. 

For example, for a disturbingly large proportion of cases either controlling for pretest differences 

(ȕX) or failing to control for pretest differences (rXZ) produces different substantive conclusions.  

Fourth, analyses which control for pretest differences (ȕX) reflect the magnitude of the 

population effect more accurately than those that do not control for pretest differences (rXZ). 

Moreover, and fifth, controlling for pretest differences provides a more powerful test of the null 

hypothesis of no mean difference between the control group and experimental group means, or 

equivalently, no association between them. 
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Implications 

The primary methodological implication of these results is to obtain a pretest measure of 

the dependent variable when possible (but see Note 2). Certainly occasions arise when a pretest 

of the dependent measure is impossible to obtain. Consider, for example, how a pretest 

measurement might be constructed in an experiment investigating the effectiveness of the 

legitimization of paltry favors compliance gaining technique (Andrews, Carpenter, Shaw, & 

Boster, 2008). In this example, what one would measure would be unclear. Additionally, if the 

sample varied little on the pretest, it would be reasonable to avoid it. In such a case the 

probability that random assignment could produce substantial pretest difference would be 

extremely low. For the vast majority of communication phenomena of interest, however, a 

sample of subjects with homogeneous scores on the dependent measure prior to a treatment 

would be unusual in the extreme (but see the classic Festinger & Carlsmith, 1959). Finally, if a 

pretest was believed to be reactive, it might be prudent to avoid it. On the other hand, two other 

strategies might be pursued instead. One could, for instance, separate the pretest from the 

experimental induction temporally to reduce any feared reactivity. Alternatively, a Solomon-

Four Group Design might be employed as a means of estimating the impact, if any, of the 

pretest. 

A second implication is the importance of sample size. It is well known that increased 

sample size increases statistical power and improves the precision of point estimates. 

Nevertheless, the data generated in this simulation show that it also increases the probability that 

random assignment will result in near equivalence of pretest scores in the control group and the 

experimental group, thus removing another source that might lead investigators to reach 

erroneous conclusions from their data analyses. These simulation data do not allow a 
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recommendation for any minimum sample size. Certainly, larger N is preferable up to the point 

that it might begin limiting research by investigators unable or unwilling to commit the resources 

necessary to reach some recommended number of subjects. Equally certain is that as N increases 

there are diminishing returns in the amount by which sampling error is reduced. 

A third and final implication pertains to meta-analysis and replication. Schmidt and 

Hunter (2015, p. 41) detail an extended set of methodological artifacts, e.g., sampling error, 

measurement error, restriction in range, etc., that produce variance in a distribution of effect sizes 

compiled from studies examining a focal bivariate relationship. Schmidt and Hunter¶s 75% Rule 

asserts that when 75% - 99% of the variance in a distribution of effect sizes can be explained by 

a limited set of artifacts (e.g., sampling error, measurement error, and restriction in range only), 

the investigator need not search for moderator variables to explain the remaining variance. 

Instead, they argue that it is likely attributable to other, unexamined artifacts. As the simulation 

data indicate the difference in pretest scores between conditions that results from random 

assignment in a posttest-only, control group design produces another artifact that may explain a 

substantial percentage of the unexplained variance in a distribution of effect sizes. 

Recently, many psychologists have a lack of confidence in the replicability of certain 

psychological experiments (Pashler & Wagenmakers, 2012). As the present data indicate, both 

for rXZ and ȕX, extreme and misleading effect sizes may be observed as a result of the limitations 

of random assignment. The possibility must be considered that failures to replicate certain 

experiments could arise, in whole or in part, from the manner in which subjects are assigned to 

conditions. This point is especially pertinent to small N experiments.  

Limitations  

 This simulation has a number of limitations that require mention. Initially, there are 

limitations in the scope of the project. For example, only a pretest-posttest, control group design 
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with independent groups was simulated. There was only one experimental factor, and it was 

limited to two values. Only one population effect size, r = .30, was examined; only one 

population autocorrelation value, r = .70, was examined; and only five sample sizes were 

employed. Although these values are, in our experience, not unusual, and perhaps even typical, 

the question of the extent of the generality of these results remains to be determined.     

A second set of limitations arises from simplified features of the simulation. For example, 

the data set was constructed so that the population pretest score was uncorrelated with the 

residual, R. Moreover, it was assumed that there would be no non-additivity between the 

experimental induction, X, and the pretest score, Y. In actual experimental data, these features 

may be violated. Again, the question of the generalizability of these results with these restrictions 

relaxed must be addressed. 

Future research 

 Future simulations are planned that address these limitations. Additionally, this line of 

inquiry will be expanded to include another type of extraneous variable(s); namely, those that 

would be thought of as potential covariates because they are associated substantially with the 

dependent variable. When mean differences on these variables in a control group and an 

experimental group result from random assignment, results similar to those found in this 

simulation arise. Furthermore, multiple covariates may exist, complicating the pattern of results. 

The topic of randomization and its limitations deserves more attention. It is important for 

researchers to better understand the meaning of observations that result from designs that rely on 

randomization, particularly when key individual differences remain unobserved. 
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Notes 

1 This claim applies to random assignment to conditions, not to probability or non-probability 

sampling of the subjects participating in the experiment. 

2 With a dependent variable unmeasurable prior to the treatment, when the sample does not vary 

on the dependent variable prior to the treatment, or when a pretest measure of the dependent 

variable might prove reactive, investigators may, for good reason, avoid obtaining a pretreatment 

measure.   
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APPENDIX A 

Table 1 

Distribution Properties—10,000 Simulations 

rXY N = 20 N = 40 N = 60 N = 80 N = 100 
Mean -0.001 0.001 0.001 -0.001 0.001 

S.D. 0.228 0.159 0.129 0.114 0.100 

Skewness 0.024 -0.010 -0.049 -0.001 0.007 

Kurtosis 2.763 2.918 2.863 2.934 2.941 

Max. 0.728 0.566 0.462 0.499 0.413 

Min. -0.713 -0.600 -0.454 -0.460 -0.348 

rXZ N = 20 N = 40 N = 60 N = 80 N = 100 
Mean 0.314 0.315 0.314 0.312 0.313 

S.D. 0.203 0.141 0.116 0.100 0.088 

Skewness -0.374 -0.281 -0.245 -0.178 -0.169 

Kurtosis 3.067 2.998 2.963 3.012 2.982 

Max. 0.864 0.744 0.667 0.716 0.597 

Min. -0.589 -0.222 -0.175 -0.092 -0.073 

βX N = 20 N = 40 N = 60 N = 80 N = 100 

Mean 0.324 0.318 0.316 0.315 0.314 

S.D. 0.142 0.096 0.077 0.067 0.060 

Skewness -0.090 -0.026 -0.031 -0.039 -0.027 

Kurtosis 3.157 2.980 3.019 3.059 2.951 

Max. 0.813 0.664 0.603 0.611 0.537 

Min. -0.524 -0.124 0.000 0.054 0.082 

Note: N = 20 implies 10 per condition (x = 0, x = 1). 
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Table 2 

Correlation / Beta Discrepancy 

Discrepancy Percentage of 10,000 Simulations 

|r - β| N = 20 N = 40 N = 60 N = 80 N = 100 
0.05 75.89 66.82 60.40 54.67 49.69 

0.10 54.40 38.97 29.33 23.57 17.25 

0.15 36.74 20.21 11.07 7.38 4.08 

0.20 22.99 8.50 3.47 1.68 0.63 

0.25 13.81 3.37 0.96 0.30 0.08 

0.30 7.78 1.31 0.32 0.05 0.00 

0.35 4.17 0.47 0.05 0.01 0.00 

0.40 2.03 0.13 0.01 0.01 0.00 

0.45 1.06 0.06 0.00 0.00 0.00 

0.50 0.48 0.02 0.00 0.00 0.00 

Note: The percentage displayed for each discrepancy refers to the proportion of samples where 
the discrepancy was at least the displayed value. 
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Table 3 

Discrepancy Between Obtained Coefficient and Estimated Population Parameter 

Discrepancy  Percentage of 10,000 Simulations 
rXZ N = 20 N = 40 N = 60 N = 80 N = 100 
0.05 80.79 73.02 66.26 61.67 57.52 

0.10 63.16 48.35 39.25 31.63 25.88 

0.15 46.63 28.98 19.95 13.40 8.70 

0.20 32.81 15.60 8.14 4.60 2.25 

0.25 22.12 7.54 2.78 1.36 0.46 

0.30 13.74 3.18 0.87 0.27 0.04 

0.35 7.86 1.24 0.26 0.04 0.01 

0.40 4.43 0.53 0.05 0.02 0.00 

0.45 2.47 0.17 0.02 0.00 0.00 

0.50 1.37 0.05 0.00 0.00 0.00 

βx N = 20 N = 40 N = 60 N = 80 N = 100 

0.05 71.66 60.84 51.81 44.93 40.66 

0.10 47.44 29.92 19.83 13.81 9.09 

0.15 29.06 12.01 5.29 2.62 1.10 

0.20 16.02 3.87 1.05 0.30 0.10 

0.25 7.79 0.82 0.12 0.02 0.00 

0.30 3.49 0.17 0.01 0.00 0.00 

0.35 1.54 0.04 0.00 0.00 0.00 

0.40 0.48 0.01 0.00 0.00 0.00 

0.45 0.12 0.00 0.00 0.00 0.00 

0.50 0.05 0.00 0.00 0.00 0.00 

Note: The percentage displayed for each discrepancy refers to the proportion of samples where 
the discrepancy was at least the displayed value. 
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Table 4 

Obtained Coefficient Significance Level 

Statistic Percentage Significant from 10,000 Simulations 
rXZ N = 20 N = 40 N = 60 N = 80 N = 100 

p < .05 39.13 59.22 74.28 84.41 91.47 

p < .01 24.20 39.62 55.03 67.81 78.71 

p < .001 13.52 21.29 32.45 44.12 56.15 

βx N = 20 N = 40 N = 60 N = 80 N = 100 

p < .05 61.63 89.36 97.51 99.42 99.91 

p < .01 39.31 73.64 91.37 97.53 99.48 

p < .001 18.86 48.17 74.65 89.54 96.38 

rXZ only N = 20 N = 40 N = 60 N = 80 N = 100 
p < .05 5.72 1.86 0.41 0.11 0.02 

p < .01 6.88 2.99 0.99 0.27 0.09 

p < .001 6.29 3.55 1.64 0.79 0.24 

ΒX only N = 20 N = 40 N = 60 N = 80 N = 100 
p < .05 27.90 32.00 23.64 15.12 8.46 

p < .01 21.99 37.01 37.33 29.99 20.86 

p < .001 11.63 30.43 43.84 46.21 40.47 

Note: In this table, “rxz only” refers to samples where only rxz was significant. 
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APPENDIX B 

On the population level the effect size of the treatment (UXZ) is determined by the value of a, the 

variance of Y and the variance of R. By choosing the right combination of these three 

parameters, we will be able to control for the population correlation of treatment and post-test 

scores. In the current study the variance of Y is arbitrarily set to be 1, UXZ is arbitrarily set to be 

0.3 and the auto-regression Uyz is set to be √0.5. 

UXZ= ஼ை௏ሺ௑,௓ሻ
ඥ௩௔௥ሺ௑ሻ௩௔௥ሺ୞ሻ

=஼ை௏ሺ௑,௒ା௔௑ାோሻ
ඥ௩௔௥ሺ௑ሻ௩௔௥ሺ୞ሻ

=஼ை௏ሺ௑,௒ሻା௔஼ை௏ሺ௑,௑ሻା஼ை௏ሺ௑,ோሻ
ඥ௩௔௥ሺ௑ሻ௩௔௥ሺ୞ሻ

;    (equation 4) 
suppose on the population level, with infinitely many data, COV(X,Y) and COV(X,R) are zero. 
Then 

UXZ=
௔௩௔௥ሺ௑ሻ

ඥ௩௔௥ሺ௑ሻ௩௔௥ሺ୞ሻ
=௔ඥ௩௔௥ሺ௑ሻ

ඥ௩௔௥ሺ௓ሻ
=0.3        (equation 5) 

Similarly: 
ȡyz=

஼ை௏ሺ௒,௓ሻ
ඥ௩௔௥ሺ௒ሻ௩௔௥ሺ୞ሻ

=஼ை௏ሺ௒,௒ା௔௑ାோሻ
ඥ௩௔௥ሺ௒ሻ௩௔௥ሺ୞ሻ

=஼ை௏ሺ௒,௒ሻା௔஼ை௏ሺ௒,௑ሻା஼ை௏ሺ௒,ோሻ
ඥ௩௔௥ሺ௒ሻ௩௔௥ሺ୞ሻ

;    (Equation 6) 
suppose on the population level, with infinitely many data, COV(X,Y) and COV(Y,R) are zero. 
Then 

ȡyz=
஼ை௏ሺ௒,௒ሻା௔஼ை௏ሺ௒,௑ሻା஼ை௏ሺ௒,ோሻ

ඥ௩௔௥ሺ௒ሻ௩௔௥ሺ୞ሻ
= ௩௔௥ሺ௒ሻ
ඥ௩௔௥ሺ௒ሻ௩௔௥ሺ୞ሻ

=ඥ௩௔௥ሺ௒ሻ
ඥ௩௔௥ሺ௓ሻ

=√0.5;    (equation 7) 

because X has an equal number of 1s and 0s, variance of X is 0.25. 
Based on equation 5 and equation 7, substituting var(Y) for 1 and var(X) for 0.25, we get 

var(Z)=2,  and a=√0.72. 
According to equation 3,  

var(Z)=var(Y)+a2var(X)+var(R)+2COV(X,Y)+2COV(X,R)+2COV(Y,R);   (equation 8) 
suppose on the population level, with infinitely many data, COV(X,Y), COV(X,R) and 
COV(Y,R) are zero. Then 

var(Z)= var(Y)+a2var(X)+var(R)=1+0.72*0.25+var(R)=2 
so that var(R)=0.82 on the population level. 
To sum up, when the population parameters are set as the following values: 

var(Y)=1 
 var(X)=0.25 

  a=√0.72 
var(R)=0.82 
 

and when post-test score (Z) is calculated according to equation 1,  
the correlations between variables in the model on the population level will be set values: 

UXZ=0.3 
UYZ=√0.5 
UXY=UXR=UYR=0 
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APPENDIX C 

Example STATA Code—Generating Values of X and Y 

 

 

 


